Understanding Edge-of-Stability Training Dynamics with a Minimalist Example

Published in arXiv Preprint, 2022

Recommended citation: Zhu X., Wang Z., Wang, X., Zhou, M. and Ge, R., 2022. Understanding Edge-of-Stability Training Dynamics with a Minimalist Example. arXiv preprint arXiv:2210.03294. https://arxiv.org/abs/2210.03294

Recently, researchers observed that gradient descent for deep neural networks operates in an “edge-of-stability” (EoS) regime: the sharpness (maximum eigenvalue of the Hessian) is often larger than stability threshold 2/η (where η is the step size). Despite this, the loss oscillates and converges in the long run, and the sharpness at the end is just slightly below 2/η. While many other well-understood nonconvex objectives such as matrix factorization or two-layer networks can also converge despite large sharpness, there is often a larger gap between sharpness of the endpoint and 2/η. In this paper, we study EoS phenomenon by constructing a simple function that has the same behavior. We give rigorous analysis for its training dynamics in a large local region and explain why the final converging point has sharpness close to 2/η. Globally we observe that the training dynamics for our example has an interesting bifurcating behavior, which was also observed in the training of neural nets.

Download paper here